
Once you've registered your client it's easy to start requesting data from Instagram.

All endpoints are only accessible via https and are located at api.instagram.com. For instance: you can
retrieve photos with a given hashtag by accessing the following URL with your access_token (replace
ACCESS‑TOKEN with your own):

https://api.instagram.com/v1/tags/nofilter/media/recent?access_token=ACCESS_TOKEN

The Instagram API requires an access_token from authenticated users for each endpoint. We no longer
support making requests using just the client_id.

Note
The URL examples throughout this documentation use ACCESS‑TOKEN as a placeholder. For
these examples to work, you need to substitute the value with your own access_token. In your
application, you should have each user go through an authentication and authorization flow in
order to receive a valid access_token.

Limits
Please refer to the limits documentation for information on rate limits that apply to API requests.

Deleting Objects
We do our best to have all our URLs be RESTful. Every endpoint (URL) may support one of four different http
verbs. GET requests fetch information about an object, POST requests create objects, PUT requests update
objects, and finally DELETE requests will delete objects.

Structure

The Envelope

Every response is contained by an envelope. That is, each response has a predictable set of keys with which
you can expect to interact:

{
 "meta": {
 "code": 200
 },
 "data": {
 ...
 },
 "pagination": {
 "next_url": "...",
 "next_max_id": "13872296"
 }
}

META

The meta key is used to communicate extra information about the response to the developer. If all goes well,
you'll only ever see a code key with value 200. However, sometimes things go wrong, and in that case you
might see a response like:

{
 "meta": {
 "error_type": "OAuthException",
 "code": 400,
 "error_message": "..."
 }
}

DATA

The data key is the meat of the response. It may be a list or dictionary, but either way this is where you'll find
the data you requested.

PAGINATION

API Endpoints

https://www.instagram.com/developer/clients/manage/
https://www.instagram.com/developer/authentication/
https://www.instagram.com/developer/limits/
http://en.wikipedia.org/wiki/Representational_state_transfer

Sometimes you just can't get enough. For this reason, we've provided a convenient way to access more data
in any request for sequential data. Simply call the url in the next_url parameter and we'll respond with the next
set of data.

{
 ...
 "pagination": {
 "next_url": "https://api.instagram.com/v1/tags/puppy/media/recent?
access_token=fb2e77d.47a0479900504cb3ab4a1f626d174d2d&max_id=13872296",
 "next_max_id": "13872296"
 }
}

On views where pagination is present, we also support the "count" parameter. Simply set this to the number
of items you'd like to receive. Note that the default values should be fine for most applications ‑ but if you
decide to increase this number there is a maximum value defined on each endpoint.

JSONP
If you're writing an AJAX application, and you'd like to wrap our response with a callback, all you have to do is
specify a callback parameter with any API call:

https://api.instagram.com/v1/tags/coffee/media/recent?access_token=ACCESS-
TOKEN&callback=callbackFunction

Would respond with:

callbackFunction({
 ...
});

