
Most API calls require an access token, but malicious developers can impersonate OAuth Clients or steal
access tokens. They will then use these to send spam on the behalf of your app. Instagram has automated
systems to detect spam, and will automatically disable the OAuth Clients responsible for these calls. You can
mitigate the risk of your app being disabled by restricting some vectors of abuses. This document covers
some of the ways you can protect your app.

Disable Client‑Side (Implicit) Authentication
The Implicit OAuth Grant flow was created for java‑script or mobile clients. Many developers use this flow
because of its convenience. Unfortunately, malicious developers can also use this flow to trick people into
authorizing your OAuth Client. They can collect access tokens and then make API calls on behalf of your app.
When this occurs, your OAuth Client could be banned from the platform by our spam detection systems.

If your app is powered by a server infrastructure, you can disable the Client‑Side (Implicit) OAuth flow by
checking the Disable implicit OAuth setting in your OAuth Client configuration. If checked, Instagram will
reject Client‑Side (Implicit) authorization requests and only grant Server‑Side (Explicit) authorization
requests. This setting helps protect your app because the Server‑Side (Explicit) OAuth flow requires the use
of your Client Secret, which should be unknown to malicious developers.

Important
Your Client Secret should be kept secure at all times. Do not share this Secret with anyone, do
not include it in java‑script code or a mobile client. Mobile apps that do not have a server‑side
component should have the Disable implicit OAuth setting unchecked. You have the ability to
reset your Client Secret to a new value at any time, if you suspect that it was leaked.

Enforce Signed Requests
Access tokens are portable: they can be generated on one machine and re‑used elsewhere. Access tokens
can also be stolen by malicious software on a person's computer or a man in the middle attack. A stolen
access token can then be used to generate spam. When targeted by such abuses, your app could be blocked
by our automated systems.

You can secure your API calls and mitigate impersonation attempts by making server‑side calls and passing a
per‑request signature using your Client Secret. Edit your OAuth Client configuration and mark the Enforce
signed requests checkbox. When enabled, Instagram will check for the sig parameter of each request and
verify that the value matches a hash computed using your Client Secret. The expected value is a HMAC using
the SHA256 hash algorithm with all your request parameters and your Client Secret.

Important
Your Client Secret should be kept secure at all times. Do not share this Secret with anyone, do
not include it in java‑script code or a mobile client. Mobile apps that do not have a server‑side
component should not use the Enforce signed requests setting. You have the ability to reset
your Client Secret to a new value at any time, if you suspect that it was leaked.

Signature format

Token to sign: endpoint|key1=value1|key2=value2|...

Parameter name: sig
Parameter value: signed token with your Client Secret using the SHA256 hash algorithm

Token: API endpoint appended with a concatenation of all key/value pairs of your request parameters,
sorted by key in ascending order. Each key/value pair is separated by the pipe character.

Examples

Endpoint: /users/self Parameters: access_token=fb2e77d.47a0479900504cb3ab4a1f626d174d2d App
Secret: 6dc1787668c64c939929c17683d7cb74

With this example, the signature key/value should be:

sig=cbf5a1f41db44412506cb6563a3218b50f45a710c7a8a65a3e9b18315bb338bf

Secure Requests

https://www.instagram.com/developer/authentication/

Endpoint: /media/657988443280050001_25025320 Parameters:
access_token=fb2e77d.47a0479900504cb3ab4a1f626d174d2d&count=10 App Secret:
6dc1787668c64c939929c17683d7cb74

Here the signature key/value would then be:

sig=260634b241a6cfef5e4644c205fb30246ff637591142781b86e2075faf1b163a

The signature describes the hex representation of a RFC 2104‑compliant HMAC with the SHA256 hash
algorithm, using the API endpoint, your request parameters and your Client Secret. Most programming
languages provide the tools to create such a signature. Here are some examples to get you started.

Python

-*- coding: UTF-8 -*-
import hmac
from hashlib import sha256

def generate_sig(endpoint, params, secret):
 sig = endpoint
 for key in sorted(params.keys()):
 sig += '|%s=%s' % (key, params[key])
 return hmac.new(secret, sig, sha256).hexdigest()

endpoint = '/media/657988443280050001_25025320'
params = {
 'access_token': 'fb2e77d.47a0479900504cb3ab4a1f626d174d2d',
 'count': 10,
}
secret = '6dc1787668c64c939929c17683d7cb74'

sig = generate_sig(endpoint, params, secret)
print sig

Ruby

require 'openssl'
require 'base64'

def generate_sig(endpoint, params, secret)
 sig = endpoint
 params.sort.map do |key, val|
 sig += '|%s=%s' % [key, val]
 end
 digest = OpenSSL::Digest::Digest.new('sha256')
 return OpenSSL::HMAC.hexdigest(digest, secret, sig)
end

endpoint = '/media/657988443280050001_25025320'
params = {
 'access_token' => 'fb2e77d.47a0479900504cb3ab4a1f626d174d2d',
 'count' => 10,
}
secret = '6dc1787668c64c939929c17683d7cb74'

sig = generate_sig(endpoint, params, secret)
print sig

PHP

<?php
function generate_sig($endpoint, $params, $secret) {
 $sig = $endpoint;
 ksort($params);
 foreach ($params as $key => $val) {
 $sig .= "|$key=$val";
 }
 return hash_hmac('sha256', $sig, $secret, false);
}

$endpoint = '/media/657988443280050001_25025320';
$params = array(
 'access_token' => 'fb2e77d.47a0479900504cb3ab4a1f626d174d2d',
 'count' => 10,
);
$secret = '6dc1787668c64c939929c17683d7cb74';

$sig = generate_sig($endpoint, $params, $secret);
echo $sig;

Testing Signed Requests

Using an invalid signature will cause your API calls to fail if the Enforce signed requests setting is set.
Because of this, you may want to test this parameter before you enable the setting for production code.

Fortunately you can use cURL to test your header format and signature easily:

curl \
 -X POST \
 -F 'access_token=<your_access_token>' \
 -F 'sig=<your_signature>' \
 https://api.instagram.com/v1/media/657988443280050001_25025320/likes

Common responses:

REASON RESPONSE

Success {"meta":{"code":200},"data":null}

Signature is required
{"code": 403, "error_type": "OAuthForbiddenException", "error_message": "Missing
required parameter 'sig'"}

Failed to validate
signature

{"code": 403, "error_type": "OAuthForbiddenException", "error_message": "Signature
does not match"}

